
 © Shroud. Leave no trace     https://shroud.sh  

 
 

Introducing Shroud: Encrypted, Ephemeral, Zero-Knowledge Messaging 

Imagine a messaging app designed for one-time, secure communications where nothing is 
stored permanently, no sensitive data is ever in plain sight, and only the communicating parties 
hold the decryption keys. That’s Shroud. Let’s walk through how it works. 

 

1. Ephemeral Sessions & Zero-Logs 

• One-Time Sessions: 

o Session Creation: Every session is created on demand using a unique session ID 
and an accompanying termination token. 

o Limited Lifetime: Sessions automatically expire after 15 minutes of inactivity, 
ensuring that stale data is purged. 

o Ephemeral Data: All session data—users, messages, and even key exchange 
parameters—reside only in memory. Once the session ends (either manually or 
due to inactivity), all information is destroyed. 

• Zero-Logs Philosophy: 

o No Persistent Storage: The server never stores any plain-text messages or long-
term user identifiers. 

o Temporary Memory: Even the session messages, while kept in memory during 
active communication, vanish immediately when the session is terminated. 

This design means that even if someone were to gain access to the server’s memory, they would 
only see encrypted, ephemeral data with no long-term logs. 

 

2. End-to-End Encryption & Zero-Knowledge 

• Client-Side Encryption: 

o Encryption Happens Locally: All encryption and decryption take place on the 
client side. The server merely routes encrypted blobs—it never sees the 
unencrypted content. 

o Zero-Knowledge: Because the server does not have the keys or the decryption 
process, it is “zero-knowledge” regarding the content of the messages. 

• Key Exchange via ECDH: 



 © Shroud. Leave no trace     https://shroud.sh  

o Ephemeral Diffie–Hellman (ECDH) on P-256: Each user generates an ephemeral 
key pair when joining a session. 

o Public Key Exchange: When a user joins, their public key (exported as a JSON 
Web Key) is shared with the other participant. 

o Shared Secret Derivation: Using ECDH and HKDF (with the session ID as salt), 
both parties derive the same shared AES-GCM key. 

o No Key Exposure: At no point does the server see any part of the key material. 

• Message Encryption with AES-GCM: 

o Per-Message IV: Every message is encrypted with a fresh random initialization 
vector (IV) to ensure message uniqueness. 

o AES-GCM Benefits: Provides both confidentiality and authentication (integrity), 
so messages can’t be tampered with without detection. 

In short, even if intercepted, the data remains unintelligible since only the two communicating 
clients possess the decryption key. 

 

3. Robust Communication & Data Integrity 

• Real-Time Messaging with Socket.IO: 

o Low-Latency Exchange: Messages and file transfers are transmitted in real time. 

o Participant Management: The app supports a strict two-user limit per session, 
ensuring that keys and messages remain private between the intended parties. 

• Message and File Integrity: 

o Message Deletion: Users can delete their own messages. This deletion is 
broadcast to all participants, ensuring that no stale or unwanted data lingers. 

o Secure File Transfers: Files are encrypted using the same shared key, then 
decrypted on the client side. Additionally, there’s client-side validation of file 
type and size to prevent abuse. 

 

4. Session Control & User Management 

• User Identification: 

o Random, Ephemeral IDs: Users are given randomly generated IDs (e.g., “SH” 
followed by random hex digits) that are used only for the duration of the session. 

• Session Termination: 

o Termination Token: Each session is paired with a unique termination token, 
which must be provided to end the session. This prevents unauthorized session 
closures. 



 © Shroud. Leave no trace     https://shroud.sh  

o Graceful Disconnects: If a user disconnects unexpectedly, a background task 
gives them a 15-second grace period before they are removed from the 
session—at which point an announcement is sent to the remaining participant. 

• Auto-Refresh: 

o Preventing Stale Sessions: If a session is not joined within a certain timeframe, it 
is automatically refreshed to ensure that only active, intentional sessions are 
maintained. 

 

5. Additional UI & Security Enhancements 

• Secure Frontend Practices: 

o Input Sanitization: All messages are sanitized (using techniques like escaping 
HTML and linkifying URLs) to prevent cross-site scripting or injection attacks. 

o User Feedback: Visual notifications (toasts) inform users of key events (e.g., new 
session generated, session ended, or errors). 

• File Handling Security: 

o Client-Side File Encryption/Decryption: Files are read as binary data, encrypted 
using AES-GCM with a unique IV, and then securely transmitted. Recipients 
decrypt files only on their end. 

o Validation: Only specific file types and sizes are allowed, reducing the risk of 
malicious file uploads. 

 

Summing Up 

• Zero-Knowledge Principles: 
Shroud is designed so that all encryption occurs on the client side. The server handles 
only encrypted data, meaning it “knows” nothing about the actual contents of your 
communications. 

• Ephemeral, Secure, and Private: 
With a strict session lifetime, robust key exchange via ECDH, AES-GCM encryption for 
both messages and files, and complete user anonymity, Shroud embodies the ethos of 
secure, one-time communication. 

• User Empowerment: 
By allowing either party to destroy the session (and thereby all data) at any time, Shroud 
empowers its users to maintain control over their privacy. Once the session is over, 
nothing remains—no logs, no keys, no recoverable messages. 

 

By combining state-of-the-art cryptography with an ephemeral, no-trace philosophy, Shroud 
offers a secure, private communication channel where the only people who ever “know” the 
conversation are you and the person you’re communicating with. 


